Optimizing therapeutic outcomes with Mechanotherapy and Ultrasound Sonopermeation in solid tumors

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Mechanical solid stress plays a pivotal role in tumor progression and therapeutic response. Elevated solid stress compresses intratumoral blood vessels, leading to hypoperfusion, and hypoxia, which impair oxygen and drug delivery. These conditions hinder the efficacy of drugs and promote tumor progression and treatment resistance compromising therapeutic outcomes. To enhance treatment efficacy, mechanotherapeutics and ultrasound sonopermeation have been developed to improve tumor perfusion and drug delivery. Mechanotherapy aims to reduce tumor stiffness and mechanical stress within tumors to normal levels leading to decompression of vessels while simultaneously improving perfusion. On the other hand, ultrasound sonopermeation strategy focuses on increasing non-invasively and transiently tumor vessel wall permeability to boost perfusion and thus, improve drug delivery. Within this framework and aiming to replicate published experimental data in silico, we developed a mathematical model designed to derive optimal conditions for the combined use of mechanotherapeutics and sonopermeation, with the goal of optimizing efficacy of nano-immunotherapy. The model incorporates complex interactions among diverse components that are crucial in the multifaceted process of tumor progression. These components encompass a variety of cell populations in tumor, such as tumor cells and immune cells, as well as components of the tumor vasculature including endothelial cells, angiopoietins, and the vascular endothelial growth factor. A comprehensive validation of the predictions generated by the mathematical model was carried out in conjunction with published experimental data, wherein a strong correlation was observed between the model predictions and the actual experimental measurements of critical parameters, which are essential to reinforce the overall accuracy of the mathematical framework employed. In addition, a parametric analysis was performed with primary objective to investigate the impact of various critical parameters that influence sonopermeation. The analysis provided optimal guidelines for the use of sonopermeation in conjunction with mechanotherapy, that contribute to identify optimal conditions for sonopermeation.

Article activity feed