De novo designed pMHC binders facilitate T cell induced killing of cancer cells

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The recognition of intracellular antigens by CD8+ T cells through T cell receptors (TCRs) is central to adaptive immunity, enabling responses against infections and cancer. The recent approval of TCR-gene-edited T cells for cancer therapy demonstrates the therapeutic advantage of using pMHC recognition to eliminate cancer. However, identification and selection of TCRs from patient material is complex and influenced by the TCR repertoire of the donors used. To overcome these limitations, we here present a rapid and robust de novo binder design platform leveraging state-of-the-art generative models, including RFdiffusion, ProteinMPNN, and AlphaFold2, to engineer minibinders (miBds) targeting the cancer-associated pMHC complex, NY-ESO-1(157-165)/HLA-A*02:01. By incorporating in silico cross-panning and molecular dynamics simulations, we enhanced specificity screening to minimise off-target interactions. We identified a miBd that exhibited high specificity for the NY-ESO-1-derived peptide SLLMWITQC in complex with HLA-A*02:01 and minimal cross-reactivity in mammalian display assays. We further demonstrate the therapeutic potential of this miBd by integrating it into a chimeric antigen receptor, as de novo Binders for Immune-mediated Killing Engagers (BIKEs). BIKE-transduced T cells selectively and effectively killed NY-ESO-1+ melanoma cells compared to non-transduced controls, demonstrating the promise of this approach in precision cancer immunotherapy. Our findings underscore the transformative potential of generative protein design for accelerating the discovery of high-specificity pMHC-targeting therapeutics. Beyond CAR-T applications, our workflow establishes a foundation for developing miBds as versatile tools, heralding a new era of precision immunotherapy.

Article activity feed