Physioxia-modulated mesenchymal stem cells secretome has higher capacity to preserve neuronal network and translation processes in hypoxic-ischemic encephalopathy in vitro model
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of child death worldwide. Most of the survivors develop various neurological diseases, such as cerebral palsy, seizures, and/or motor and behavioral problems. HIE is caused by an episode of perinatal asphyxia, which interrupts the blood supply to the brain. Due to its high energy demands, this interruption initiates glutamate excitotoxic pathways, leading to cell death. Umbilical cord mesenchymal stem cells (UC-MSCs) are gaining attention as a promising complement to the current clinical approach, based on therapeutic hypothermia, which has shown limited efficacy. Previous data have shown that priming MSCs under physiological culture conditions, namely soft platforms (3kPa) – mechanomodulated – or physiological oxygen levels (5% O 2 ) – physioxia – leads to changes in the cellular proteome and their secretome. To evaluate how exposing MSCs’ to these culture conditions could impact their therapeutic potential, physiologically primed UC-MSCs or their secretome were added to an in vitro HIE model using cortical neurons primary cultures subjected to oxygen and glucose deprivation (OGD) insult. By comparing the neuronal proteome of sham, OGD insulted, and OGD-treated neurons, it was possible to identify proteins whose levels were restored in the presence of UC-MSCs or their secretome. Despite the different approaches that differentially altered UC-MSCs’ proteome and secretome, the effects converged on the re-establishment of the levels of proteins involved in translation mechanisms (such as the 40S and 60s ribosomal subunits), possibly stabilizing proteostasis, which is known to be essential for neuronal recovery. Interestingly, treatment with the secretome of UC-MSC modulated under physioxic conditions sustained part of the neuronal network integrity and modulated several mitochondrial proteins, including those proteins involved in ATP production. This suggests that the unique composition of the physioxia-modulated secretome may offer a therapeutical advantage in restoring essential cellular processes that help neurons maintain their function, compared to traditionally expanded UC-MSCs. These findings suggest that both the presence of UC-MSCs and their secretome alone can influence multiple targets and signaling pathways, collectively promoting neuronal survival following an OGD insult.