Programmable epigenome editing by transient delivery of CRISPR epigenome editor ribonucleoproteins
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Programmable epigenome editors modify gene expression in mammalian cells by altering the local chromatin environment at target loci without inducing DNA breaks. However, the large size of CRISPR-based epigenome editors poses a challenge to their broad use in biomedical research and as future therapies. Here, we present Robust ENveloped Delivery of Epigenome-editor Ribonucleoproteins (RENDER) for transiently delivering programmable epigenetic repressors (CRISPRi, DNMT3A-3L-dCas9, CRISPRoff) and activator (TET1-dCas9) as ribonucleoprotein complexes into human cells to modulate gene expression. After rational engineering, we show that RENDER induces durable epigenetic silencing of endogenous genes across various human cell types, including primary T cells. Additionally, we apply RENDER to epigenetically repress endogenous genes in human stem cell-derived neurons, including the reduction of the neurodegenerative disease associated V337M-mutated Tau protein. Together, our RENDER platform advances the delivery of CRISPR-based epigenome editors into human cells, broadening the use of epigenome editing in fundamental research and therapeutic applications.