BPMs regulate Arabidopsis seedling development by promoting auxin-independent degradation of the Aux/IAA protein IAA10

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

After germination, seedlings undergo etiolated development (skotomorphogenesis), enabling them to grow towards the soil surface. In Arabidopsis, etiolated seedlings exhibit rapid hypocotyl elongation, apical hook formation and closed cotyledons to protect the meristem. In this study, we found that high-order mutants in the BPM gene family displayed defects in seedling development, characterized by a shorter hypocotyl, early apical hook opening, and opened cotyledons in the dark. BPM1, BPM2, BPM4, and BPM5 exhibit distinct expression patterns and subcellular localization in etiolated seedlings. In a hypocotyl segment assay the bpm mutants showed defects in auxin response indicating impaired auxin signaling in the hypocotyl. Expression of the auxin reporter DR5:GFP was also altered in the bpm1,4,5 mutant in various tissues compared to the wild type. Furthermore, we showed that BPM1 and IAA10 interact in yeast two-hybrid, BiFC, and Co-IP assays. Experiments in protoplasts indicated that BPM1 promotes ubiquitylation and degradation of IAA10, and the level of IAA10 protein is greater in the bpm1,4,5 mutant. In addition, IAA10 over-expression resulted in phenotypes similar to the bpm mutants. These results indicate that the BPMs target the Aux/IAA proteins for ubiquitylation and degradation. Overall, our findings shed light on the key roles of the BPMs in auxin signaling during seedling development.

Article activity feed