Bayesian phylodynamic inference of multi-type population trajectories using genomic data

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Phylodynamic methods provide a coherent framework for the inference of population parameters directly from genetic data. They are an important tool for understanding both the spread of epidemics as well as long-term macroevolutionary trends in speciation and extinction. In particular, phylodynamic methods based on multi-type birth-death models have been used to infer the evolution of discrete traits, the movement of individuals or pathogens between geographic locations or host types, and the transition of infected individuals between disease stages. In these models, population heterogeneity is treated by assigning individuals to different discrete types. Typically, methods which allow inference of parameters under multi-type birth-death models integrate over the possible birth-death trajectories (i.e. the type-specific population size functions) to reduce the computational demands of the inference. As a result, it has not been possible to use these methods to directly infer the dynamics of trait-specific population sizes, infected host counts or other such demographic quantities. In this paper we present a method which infers these multi-type trajectories with almost no additional computational cost beyond that of existing methods. We demonstrate the practicality of our approach by applying it to a previously-published set of MERS-CoV genomes, inferring the numbers of human and camel cases through time, together with the number and timing of spillovers from the camel reservoir. This application highlights the multi-type population trajectory’s ability to elucidate properties of the population which are not directly ancestral to its sampled members.

Article activity feed