Selective Inhibition of Cytosolic PARylation via PARG99: A Targeted Approach for Mitigating FUS-associated Neurodegeneration
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) are characterized by complex etiologies, often involving disruptions in functions of RNA/DNA binding proteins (RDBPs) such as FUS and TDP-43. The cytosolic mislocalization and aggregation of these proteins are linked to accumulation of unresolved stress granules (SGs), which exacerbate the disease progression. Poly-ADP-ribose polymerase (PARP)-mediated PARylation plays a critical role in this pathological cascade, making it a potential target for intervention. However, conventional PARP inhibitors are limited by their detrimental effects on DNA repair pathways, which are already compromised in ALS. To address this limitation, we investigated a strategy focused on targeting the cytosolic compartment by expressing the cytosol-specific, natural PAR- glycohydrolase (PARG) isoform, PARG99. Using ALS patient derived FUS mutant induced pluripotent cells (iPSCs) and differentiated neurons, we observed elevated levels of FUS in insoluble fractions in mutant cells compared to mutation-corrected isogenic lines. The insoluble FUS as well as TDP-43 levels increased further in sodium arsenite-treated or oxidatively stressed cells, correlating with accumulation of unresolved SGs. Notably, both PARG99 and PARP inhibitors reduced SG formation and insoluble FUS levels, however, PARG99 treated cells exhibited significantly lower DNA damage markers and improved viability under oxidative and arsenite stress. This study highlights the potential of PARG99 as a cytosol-specific intervention to mitigate FUS-associated toxicity while preserving critical nuclear DNA repair mechanisms, offering a promising strategy for addressing the underlying pathology of ALS and potentially other SG-associated neurodegenerative diseases.