A reinforcement learning based software simulator for motor brain-computer interfaces

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Intracortical motor brain-computer interfaces (BCIs) are expensive and time-consuming to design because accurate evaluation traditionally requires real-time experiments. In a BCI system, a user interacts with an imperfect decoder and continuously changes motor commands in response to unexpected decoded movements. This “closed-loop” nature of BCI leads to emergent interactions between the user and decoder that are challenging to model. The gold standard for BCI evaluation is therefore real-time experiments, which significantly limits the speed and community of BCI research. We present a new BCI simulator that enables researchers to accurately and quickly design BCIs for cursor control entirely in software. Our simulator replaces the BCI user with a deep reinforcement learning (RL) agent that interacts with a simulated BCI system and learns to optimally control it. We demonstrate that our simulator is accurate and versatile, reproducing the published results of three distinct types of BCI decoders: (1) a state-of-the-art linear decoder (FIT-KF), (2) a “two-stage” BCI decoder requiring closed-loop decoder adaptation (ReFIT-KF), and (3) a nonlinear recurrent neural network decoder (FORCE).

Article activity feed