Measuring regulatory network inheritance in dividing yeast cells using ordinary differential equations
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Quantifying the inheritance of regulatory networks among proteins during asymmetric cell division remains a challenge due to the complexity of these systems and the lack of robust mathematical definitions for inheritance. We propose a novel statistical framework called ODEinherit to measure how much a mother cell’s regulatory network explains its daughter’s trajectories, addressing this gap. Using time-lapse microscopy, we tracked the expression dynamics of six proteins across 85 dividing S. cerevisiae cells, observed over eight hours at 12-minute intervals. Our framework employs a two-step approach. First, we estimate an ordinary differential equation (ODE) system for each cell to characterize protein interactions, introducing novel adjustments for non-oscillatory time series and leveraging multi-cell data. Second, we assess inheritance by clustering cells based on cycling markers and quantifying how well a mother’s regulatory network predicts her daughter’s. Preliminary findings suggest stage-dependent differences in inheritance rates, paving the way for applications in cellular stress response and cell-fate prediction studies across generations.