Air-Liquid Interface Model for Influenza Aerosol Exposure In Vitro
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Airborne transmission is an essential mode of infection and spread of influenza viruses among humans. However, most studies use liquid inoculum for virus infection. To better replicate natural airborne infections in vitro , we generated a calm-aerosol settling chamber system designed to examine the aerosol infectivity of influenza viruses in different cell types. Aerosol inoculation was characterized for multiple influenza A virus (FLUAV) subtypes, including a pandemic 2009 H1N1, a seasonal swine H3N2, and an avian H9N2 using this exposure system. While each FLUAV strain displayed high infectivity within MDCK cells via liquid inoculation, differences in infectivity were observed during airborne inoculation. This was further observed in recently developed immortalized differentiated human airway epithelial cells (BCi-NS1.1) cultured in an air-liquid interface. The airborne infectious dose 50 for each virus was based on the exposure dose per well. Our findings indicate that this system has the potential to enhance our understanding of the factors influencing influenza transmission via the airborne route. This could be invaluable for conducting risk assessments, potentially reducing the reliance on extensive and costly in vivo animal studies.
Importance
This study presents a significant advancement in influenza research by developing a novel in vitro system to assess aerosol infectivity, a crucial aspect of influenza transmission. The system’s ability to differentiate between mammalian-adapted and avian-adapted influenza viruses based on their aerosol infectivity offers a valuable tool for pre-screening the pandemic potential of different strains. This could potentially streamline the risk assessment process and inform public health preparedness strategies. Moreover, the system’s capacity to examine aerosol infectivity in human airway epithelial cells provides a more relevant model for studying virus-host interactions in natural airborne infections. Overall, this study provides an accessible platform for investigating aerosol infectivity, which could significantly contribute to our understanding of influenza transmission and pandemic preparedness.