Synchronization of the segmentation clock using synthetic cell-cell signaling

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Tight coordination of cell-cell signaling in space and time is vital for self-organization in tissue patterning. During vertebrate development, the segmentation clock drives oscillatory gene expression in the presomitic mesoderm (PSM), leading to the periodic formation of somites. Oscillatory gene expression is synchronized at the cell population level; inhibition of Delta-Notch signaling results in the loss of synchrony and the fusion of somites. However, it remains unclear how cell-cell signaling couples oscillatory gene expression and controls synchronization. Here, we report the reconstitution of synchronized oscillation in PSM organoids by synthetic cell-cell signaling with designed ligand-receptor pairs. Optogenetic assays uncovered that the intracellular domains of synthetic ligands play key roles in dynamic cell-cell communication. Oscillatory coupling using synthetic cell-cell signaling recovered the synchronized oscillation in PSM cells deficient for Delta-Notch signaling; non-oscillatory coupling did not induce recovery. This study reveals the mechanism by which ligand-receptor molecules coordinate the synchronization of the segmentation clock, and provides direct evidence of oscillatory cell-cell communication in the segmentation clock.

Article activity feed