Sex differences in ACE2, TMPRSS2, and HLA-DQA2 expression in gray matter: Implications for post-COVID-19 neurological symptoms

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

COVID-19 has been associated with sex differences in terms of mortality and morbidity. Viral entry proteins including those regulated by ACE2 and TMPRSS2 may play a role, but few studies have been conducted to date and none have examined sex differences in brain expression. Additionally, HLA-DQA2 expression has emerged as a potential moderator of COVID-19 outcomes. Using non-invasive imaging transcriptomics, we measured ACE2, TMPRSS2, and HLA-DQA2 mRNA expression in gray matter volumes using MRI scans obtained from 1,045 healthy adults aged 21-35 years (44% male) imaged prior to the COVID-19 pandemic. ACE2 (t = 9.24, p < 0.001, d = 0.576), TMPRSS2 (t = 24.66, p < 0.001, d = 1.54), and HLA-DQA2 (t = 3.70, p < 0.001, d = 0.231) expression was significantly higher in males compared to females. Bayesian network analysis indicated significant (p < 0.05) positive causal paths from ACE2 to HLA-DQA2 (B = 0.282), ACE2 to TMPRSS2 (B = 0.357), and TMPRSS2 to HLA-DQA1 (B = 0.139) and a negative causal path from sex (males = -1, females = 1) to TMPRSS2 (B = -0.607). Our results have important implications for neurological symptoms associated with COVID-19 and long COVID including complex interactions between viral entry proteins and immune responses, sex-related disparities in symptom reporting and diagnosis, assessment of neurological problems after COVID-19, and potential COVID-19 related syndemics. However, further research is needed to determine gene expression patterns by sex and COVID-19 outcomes, to evaluate additional genes that may influence neurologic status, and studies that include objective assessments of neurologic outcomes.

Article activity feed