Peptide modified, programmable DNA tetrahedra to modulate autophagy in biological systems
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Autophagy is a critical cellular pathway for degrading and recycling damaged components, essential for maintaining cellular homeostasis. Dysregulation of autophagy contributes to various diseases, including neurodegenerative disorders, cancers, and metabolic syndromes, highlighting the therapeutic potential of controlled autophagy induction. However, current autophagy inducers often lack specificity and may inadvertently trigger apoptosis, limiting their clinical utility. Here, we present a DNA tetrahedron-BH3 peptide nanosystem (Tdpep) engineered to selectively induce autophagy by disrupting the Beclin 1-Bcl2 interaction, a pivotal regulatory point in autophagy initiation. Tdpep, functionalized with a BH3 peptide targeting Bcl2, demonstrated efficient cellular uptake and minimal cytotoxicity in HeLa cells at concentrations up to 200nM. Autophagy induction was confirmed by increased LC3B puncta formation and fluorescence intensity comparable to that induced by rapamycin. Autophagy flux analysis of Tdpep with bafilomycin A1 validated enhanced autophagic activity rather than flux inhibition. Furthermore, Tdpep treatment significantly reduced cellular ROS levels, indicating effective autophagic turnover. Apoptosis assays showed that Tdpep did not induce apoptosis, confirming its selective autophagy induction. Furthermore, Tdpep nanosystem also induced autophagy in Danio rerio larvae in vivo model. Thus, this targeted DNA tetrahedron nanosystem provides a precise autophagy modulation platform with minimized off-target effects, offering a promising therapeutic strategy for diseases associated with autophagy dysfunction.