Drug Delivery Process Simulation - Quantifying the Conformation Dynamics of Paclitaxel and Cremophor EL

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Paclitaxel is a highly successful anti-neoplastic cancer drug. The first clinically successful paclitaxl-delivery method is a mixture with cremophor EL and ethanol, here termed the taxol micelle. Until now, molecular dynamics analysis has not been presented to quantify the structural and conformation properties of these drug molecules when interacting with each other to create this nonstandard micelle. Here we apply systematic molecular simulation and statistical analysis of paclitaxel and cremophor EL conformations based on all atom and coarse-grained approaches. The cremophor EL in the taxol micelle showed a clustering network in a 3D landscape where paclitaxel can be loaded at much higher than standard concentration with no aggregation. Paclitaxel particles within the cremophor EL cavities showed some oscillatory behaviour due to a repeated adsorption/desorption with the surrounding network. Paclitaxel conformations at the lowest energy state can be described when the side-chain phenyl rings are closer relative to the immobile core. Cremophor EL molecules reached the highest energy state when wings were fully spread and at the lowest energy state when wings were fully closed. The spiral shapes were observed to be the dominant species in the cremophor EL population. We then established reliable statistical correlations between molecular conformations and the energy states. Our reliable all atom and coarse-grained modelling approach can also be applied for effective drug design analysis using different drug delivery systems.

Table of Contents/Abstract Graphic

Article activity feed