Designed miniproteins potently inhibit and protect against MERS-CoV

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen with 36% case-fatality rate in humans. No vaccines or specific therapeutics are currently approved to use in humans or the camel host reservoir. Here, we computationally designed monomeric and homo-oligomeric miniproteins binding with high affinity to the MERS-CoV spike (S) glycoprotein, the main target of neutralizing antibodies and vaccine development. We show that these miniproteins broadly neutralize a panel of MERS-CoV S variants, spanning the known antigenic diversity of this pathogen, by targeting a conserved site in the receptor-binding domain (RBD). The miniproteins directly compete with binding of the DPP4 receptor to MERS-CoV S, thereby blocking viral attachment to the host entry receptor and subsequent membrane fusion. Intranasal administration of a lead miniprotein provides prophylactic protection against stringent MERS-CoV challenge in mice motivating future clinical development as a next-generation countermeasure against this virus with pandemic potential.

Article activity feed