MEF2C controls segment-specific gene regulatory networks that direct heart tube morphogenesis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The gene regulatory networks (GRNs) that control early heart formation are beginning to be understood, but lineage-specific GRNs remain largely undefined. We investigated networks controlled by the vital transcription factor MEF2C, with a time course of single-nucleus RNA- and ATAC-sequencing in wild-type and Mef2c -null embryos. We identified a “posteriorized” cardiac gene signature and chromatin landscape in the absence of MEF2C. Integrating our multiomics data in a deep learning-based model, we constructed developmental trajectories for each of the outflow tract, ventricular, and inflow tract segments, and alterations of these in Mef2c -null embryos. We computationally identified segment-specific MEF2C-dependent enhancers, with activity in the developing zebrafish heart. Finally, using inferred GRNs we discovered that the Mef2c -null heart malformations are partly driven by increased activity of the nuclear hormone receptor NR2F2. Our results delineate lineage-specific GRNs in the early heart tube and provide a generalizable framework for dissecting transcriptional networks governing developmental processes.

Article activity feed