All-atom simulations elucidate the molecular mechanism underlying RNA-membrane interactions
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
RNA-membrane interactions are starting to emerge as an important organizing force in both natural and synthetic biological systems. Notably, RNA molecules were recently discovered to be present on the extracellular surface of living cells, where they mediate intercellular signalling. Furthermore, RNA-membrane interactions influence the efficacy of lipid-based RNA delivery systems. However, the molecular terms driving RNA localisation at the membrane remain poorly understood. In this work, we investigate how RNA-phospholipid membrane interactions occur, by means of all-atom simulations. We find that among the four RNA nucleobases guanine exhibits the strongest interaction with the membrane due to extensive hydrogen bond formation. Additionally, we show that intra-RNA base pairing present in organised RNA structures significantly hinders RNA binding to the membrane. Elucidating the molecular details of RNA-membrane association will importantly contribute to improving the design of RNA-based drugs as well as lipid-based RNA delivery systems and to parsing out RNA transport and localisation mechanisms.