DiCARN-DNase: Enhancing Cell-to-Cell Hi-C Resolution Using Dilated Cascading ResNet with Self-Attention and DNase-seq Chromatin Accessibility Data

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The spatial organization of chromatin is fundamental to gene regulation and essential for proper cellular function. The Hi-C technique remains the leading method for unraveling 3D genome structures, but the limited availability of high-resolution Hi-C data poses significant challenges for comprehensive analysis. Deep learning models have been developed to predict high-resolution Hi-C data from low-resolution counterparts. Early CNN-based models improved resolution but struggled with issues like blurring and capturing fine details. In contrast, GAN-based methods encountered difficulties in maintaining diversity and generalization. Additionally, most existing algorithms perform poorly in cross-cell line generalization, where a model trained on one cell type is used to enhance high-resolution data in another cell type. In this work, we propose DiCARN (Dilated Cascading Residual Network) to overcome these challenges and improve Hi-C data resolution. DiCARN leverages dilated convolutions and cascading residuals to capture a broader context while preserving fine-grained genomic interactions. Additionally, we incorporate DNase-seq data into our model, providing a robust framework that demonstrates superior generalizability across cell lines in high-resolution Hi-C data reconstruction. DiCARN is publicly available at https://github.com/OluwadareLab/DiCARN

Article activity feed