Conserved transcription factors coordinate synaptic gene expression through repression

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Chemical synapses are the primary sites of communication in the nervous system. Synapse formation is a complex process involving hundreds of proteins that must be expressed in two cells at the same time. We find that synaptic genes are broadly and specifically coordinated at the level of transcription across developing nervous systems. How this spatiotemporal coordination is achieved remains an open question. Through genomic and functional studies in Drosophila , we demonstrate corresponding coordination of chromatin accessibility and identify chromatin regulators DEAF1 and CLAMP as broad repressors of synaptic gene expression outside windows of peak synaptogenesis. Disruption of either factor temporally dysregulates synaptic gene expression across neuronal subtypes, leading to excess synapse formation. We further find that DEAF1, which is linked to syndromic intellectual disability, is both necessary and sufficient to constrain synapse formation. Our findings reveal the critical importance of broad temporally coordinated repression of synaptic gene expression in regulating neuronal connectivity and identify two key repressors.

Article activity feed