AlphaFold 2, but not AlphaFold 3, predicts confident but unrealistic β-solenoid structures for repeat proteins

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

AlphaFold 2 has revolutionised protein structure prediction but, like any new tool, its performance on specific classes of targets, especially those potentially under- represented in its training data, merits attention. Prompted by a highly confident prediction for a biologically meaningless, scrambled repeat sequence, we assessed AF2 performance on sequences comprised perfect repeats of random sequences of different lengths. AF2 frequently folds such sequences into β-solenoids which, while ascribed high confidence, contain unusual and implausible features such as internally stacked and uncompensated charged residues. A number of sequences confidently predicted as β-solenoids are predicted by other advanced methods as intrinsically disordered. The instability of some predictions is demonstrated by Molecular Dynamics. Importantly, other Deep Learning-based structure prediction tools predict different structures or β-solenoids with much lower confidence suggesting that AF2 alone has an unreasonable tendency to predict confident but unrealistic β-solenoids for perfect repeat sequences. The potential implications for structure prediction of natural (near-)perfect sequence repeat proteins are also explored.

Article activity feed