Orexinergic projections to substantia innominata mediate arousal and analgesia
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Understanding neural circuits involved in anesthesia is crucial for improving its safety and efficacy. Hypothalamic orexin neurons (LHA OX ), projecting broadly, are essential in regulating arousal and pain. However, the precise targets remain unclear. Here we investigated the orexin projections to the substantia innominata (SI). Combining optogenetics, fiber photometry, and EEG/EMG allowed us to manipulate orexin activities, while simultaneously recording local ligand release and global cortical activities during anesthesia. Brain slice electrophysiology revealed the synaptic connections in the SI, while RNAscope was employed to examine the distribution of orexin receptors and downstream neuronal types. Presynaptic vesicles were identified in the orexin terminals in the SI, where 49.16% of cells expressed OX2R and 6.8% expressed OX1R. Orexin release in the SI was reversibly suppressed by isoflurane. Optogenetic activation of the LHA OX →SI circuit significantly increased orexin release and promoted arousal from various anesthesia stages, including reanimation during 0.75% isoflurane (p < 0.0001), prolongation of 3% isoflurane induction (p = 0.0033), and acceleration of emergence from 2% isoflurane (p < 0.0001). Furthermore, activating this circuit induced analgesia to both thermal (p = 0.0074) and inflammatory (p = 0.0127) pain. Patch-clamp recordings revealed that optogenetic activation of orexin terminals in the SI elicited excitatory postsynaptic currents, which were blocked by the OX2R antagonist. SI contains more GABAergic (28.17%) and glutamatergic (11.96%) neurons than cholinergic neurons (4.13%), all of which expressed OX2R. Thus, LHA OX neurons innervate SI neurons to regulate both arousal and pain predominantly through OX2R.