Structure of a Putative Terminal Amidation Domain in Natural Product Biosynthesis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Bacteria are rich sources of pharmaceutically valuable natural products, many crafted by modular polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). PKS and NRPS systems typically contain a thioesterase (TE) to offload a linear or cyclized product from a carrier protein, but alternative chemistry is needed for products with a terminal amide. Several pathways with amidated products also possess an uncharacterized 400-amino acid terminal domain. We present the characterization and structure of this putative terminal amidation domain (TAD). TAD binds NAD with the nicotinamide near an invariant cysteine that is also accessible to an intermediate on a carrier protein, indicating a catalytic role. The TAD structure resembles cyanobacterial acyl-ACP reductase (AAR), which binds NADPH near an analogous catalytic cysteine. Bioinformatic analysis reveals that TADs are broadly distributed across bacterial phyla and often occur at the end of terminal NRPS modules, suggesting many amidated products may yet be discovered.