Activity-dependent extracellular proteolytic cascade remodels ECM to promote structural plasticity
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The brain’s perineuronal extracellular matrix (ECM) is a crucial factor in maintaining the stability of mature brain circuitry. However, how is activity-induced synaptic plasticity achieved in the adult brain with a dense ECM? We hypothesized that neuronal activity induces cleavage of ECM components, creating space for synaptic rearrangements. To test this hypothesis, we investigated neuronal activity-dependent proteolytic cleavage of brevican, a prototypical perineuronal ECM proteoglycan, and its importance of this process for functional and structural synaptic plasticity in the rat hippocampus ex vivo . Our findings revealed that chemical long-term potentiation (cLTP) triggers a rapid brevican cleavage through the activation of an extracellular proteolytic cascade involving proprotein convertases and ADAMTS-4 and ADAMTS-5. This process is dependent on NMDA receptors and requires astrocytes. Interestingly, the extracellular full-length brevican increases upon cLTP, indicating a simultaneous secretion of ECM components. Interfering with cLTP-induced brevican cleavage did not impact the early LTP but prevented formation of new dendritic protrusions. Collectively, these results reveal a mechanism of activity-dependent ECM remodeling and suggest that ECM degradation is essential for structural synaptic plasticity.