Reducing Information and Selection Bias in EHR-Linked Biobanks via Genetics-Informed Multiple Imputation and Sample Weighting
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Electronic health records (EHRs) are valuable for public health and clinical research but are prone to many sources of bias, including missing data and non-probability selection. Missing data in EHRs is complex due to potential non-recording, fragmentation, or clinically informative absences. This study explores whether polygenic risk score (PRS)-informed multiple imputation for missing traits, combined with sample weighting, can mitigate missing data and selection biases in estimating disease-exposure associations. Simulations were conducted for missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR) conditions under different sampling mechanisms. PRS-informed multiple imputation showed generally lower bias, particularly when combined with sample weighting. For example, in biased samples of 10,000 with exposure and outcome MAR data, PRS-informed imputation had lower percent bias (3.8%) and better coverage rate (0.883) compared to PRS-uninformed (4.5%; 0.877) and complete case analyses (10.3%; 0.784) in covariate-adjusted, weighted, multiple imputation scenarios. In a case study using Michigan Genomics Initiative (n=50,026) data, PRS-informed imputation aligned more closely with a sample-weighted All of Us-derived benchmark than analyses ignoring missing data and selection bias. Researchers should consider leveraging genetic data and sample weighting to address biases from missing data and non-probability sampling in biobanks.