Optimizing On-the-Fly Probability Enhanced Sampling for Complex RNA Systems: Sampling Free Energy Surfaces of an H-Type Pseudoknot

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

All-atom molecular dynamics (MD) simulations offer crucial insights into biomolecular dynamics, but inherent time scale constraints often limit their effectiveness. Advanced sampling techniques help overcome these limitations, enabling predictions of deeply rugged folding free energy surfaces (FES) of RNAs at atomistic resolution. The Multithermal-Multiumbrella On-the-Fly Probability Enhanced Sampling (MM-OPES) method, which combines temperature and collective variables (CVs) to accelerate sampling, has shown promise and cost-effectiveness. However, the applications have so far been limited to simpler RNA systems, such as stem-loops. In this study, we optimized the MM-OPES method to explore the FES of an H-type RNA pseudoknot, a more complex fundamental RNA folding unit. Through systematic exploration of CV combinations and temperature ranges, we identified an optimal strategy for both sampling and analysis. Our findings demonstrate that treating the native-like contacts in two stems as independent CVs and using a temperature range of 300–480 K provides the most effective sampling, while projections onto native Watson-Crick-type hydrogen bond CVs yield the best resolution FES prediction. Additionally, our sampling scheme also revealed various folding/unfolding pathways. This study provides practical insights and detailed decision-making strategies for adopting the MM-OPES method, facilitating its application to complex RNA structures at atomistic resolution.

TOC Graphic

Article activity feed