Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina). Here, we show that the nuclear genomes of many filamentous fungi (Pezizomycotina) contain small clusters of genes coding for a zymocin-like ribonuclease (γ-toxin), a chitinase (toxin α/β-subunit), and in some cases an immunity protein. The γ-toxins from Fusarium oxysporum and Colletotrichum siamense abolished growth when expressed intracellularly in S. cerevisiae . Phylogenetic analysis of glycoside hydrolase 18 (GH18) domains shows that the chitinase genes in the gene clusters are members of the previously described C-II subgroup of Pezizomycotina chitinases. We propose that the Pezizomycotina gene clusters originated by integration of a yeast-like VLE into the nuclear genome, but this event must have been ancient because (1) phylogenetically, the Pezizomycotina C-II chitinases and the Saccharomycotina VLE-encoded toxin α/β subunit chitinases are sister clades with neither of them nested inside the other, and (2) many of the Pezizomycotina toxin cluster genes contain introns, whereas VLEs do not. One of the toxin gene clusters in Fusarium graminearum is a locus that has previously been shown to be under diversifying selection in North American populations of this plant pathogen. We also show that two genera of agaric mushrooms (Basidiomycota) have acquired toxin gene clusters by horizontal transfers from different Pezizomycotina donors.

Article activity feed