Single-cell transcriptomics reveal diverging pathobiology and opportunities for precision targeting in scleroderma-associated versus idiopathic pulmonary arterial hypertension

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Introduction

Pulmonary arterial hypertension (PAH) involves progressive cellular and molecular change within the pulmonary vasculature, leading to increased vascular resistance. Current therapies targeting nitric oxide (NO), endothelin, and prostacyclin pathways yield variable treatment responses. Patients with systemic sclerosis-associated PAH (SSc-PAH) often experience worse outcomes than those with idiopathic PAH (IPAH).

Methods

Lung tissue samples from four SSc-PAH, four IPAH, and four failed donor specimens were obtained from the Pulmonary Hypertension Breakthrough Initiative (PHBI) lung tissue bank. Single-cell RNA sequencing (scRNAseq) was performed using the 10X Genomics Chromium Flex platform. Data normalization, clustering, and differential expression analysis were conducted using Seurat. Additional analyses included gene set enrichment analysis (GSEA), transcription factor activity analysis, and ligand-receptor signaling. Pharmacotranscriptomic screening was performed using the Connectivity Map.

Results

SSc-PAH samples showed a higher proportion of fibroblasts and dendritic cells/macrophages compared to IPAH and donor samples. GSEA revealed enriched pathways related to epithelial-to-mesenchymal transition (EMT), apoptosis, and vascular remodeling in SSc-PAH samples. There was pronounced differential gene expression across diverse pulmonary vascular cell types and in various epithelial cell types in both IPAH and SSc-PAH, with epithelial to endothelial cell signaling observed. Macrophage to endothelial cell signaling was particularly pronounced in SSc-PAH. Pharmacotranscriptomic screening identified TIE2, GSK-3, and PKC inhibitors, among other compounds, as potential drug candidates for reversing SSc-PAH gene expression signatures.

Discussion

Overlapping and distinct gene expression patterns exist in SSc-PAH versus IPAH, with significant molecular differences suggesting unique pathogenic mechanisms in SSc-PAH. These findings highlight the potential for precision-targeted therapies to improve SSc-PAH patient outcomes. Future studies should validate these targets clinically and explore their therapeutic efficacy.

Article activity feed