The plastid-encoded RNA polymerase structures a logistic chain for light-induced photosynthesis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The chloroplast is the semi-autonomous organelle of eukaryotes that performs photosynthesis. In higher plants, chloroplast biogenesis depends on a tight transcriptional coordination of both nuclear- and-plastid photosynthesis-associated genes. The plastid-encoded RNA-polymerase (PEP) is composed of a plastid-encoded catalytic core, similar to multi-subunit RNA polymerases, bound to fifteen nuclear-encoded PEP-associated proteins (PAPs). The binding of all the PAPs to the catalytic core is essential for plastid transcription of photosynthesis-associated genes. Our cryo-electron microscopy structure of the native 21-subunit PEP from Sinapis alba reveals the distinctive patterning of PAP interactions, which evolved upon the ancestral cyanobacterial catalytic core acting as a scaffold. Using PAP8 in planta as bait for affinity purification and proximity labeling, we provide the protein landscapes surrounding the PEP and other PAP8-interacting complexes at the transition from skotomorphogenesis to photomorphogenesis. The data highlight multiple functional couplings in which plastid transcription is at the beginning of a spatial logistic chain, extending from transcription to the assembly of the photosynthetic apparatus into the thylakoids. In addition, dark-specific interactions between photoreceptors and PAP8 establish a physical link between an integrated light signaling and plastid functions.

Article activity feed