The molecular basis of immunosuppression by soluble CD52 is defined by interactions of N-linked and O-linked glycans with HMGB1 Box B

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Human soluble CD52 is a short glycopeptide comprising 12 amino acids (GQNDTSQTSSPS) which functions as an immune regulator by sequestering the pro-inflammatory high mobility group box protein 1 (HMGB1) and supressing immune responses. Recombinant CD52 has been shown to act as a broad anti-inflammatory agent, dampening both adaptive and innate immune responses. This short glycopeptide is heavily glycosylated, with a complex sialylated N-linked glycan at N3 and reported O- linked glycosylation possible on several serine and threonine residues. Previously we demonstrated that specific glycosylation features of CD52 are essential for its immunosuppressive function, with terminal α-2,3-linked sialic acids required for binding to the inhibitory SIGLEC-10 receptor leading to T-cell suppression. Using high resolution mass spectrometry, we have further characterised the N- and O-linked glycosylation of Expi293 recombinantly produced CD52 at a glycopeptide and released glycan level, accurately determining glycan heterogeneity of both N- and O-linked glycosylation, and localising the site of O-glycosylation to T8 with high confidence and direct spectral evidence. This detailed knowledge of CD52 glycosylation informed the construction of a model system, which we analysed by molecular dynamics simulations to understand the mechanism of recognition and define interactions between bioactive CD52, HMGB1 and the SIGLEC-10 receptor. Our results confirm the essential role of glycosylation, more specifically hyper-sialylation, in the function of CD52, and identify at the atomistic level specific interactions between CD52 glycans and the Box B domain of HMGB1 that determine recognition, and the stability of the CD52/HMGB1 complex. These insights will inform the development of synthetic CD52 as an immunotherapeutic agent.

Article activity feed