A new discrete-geometry approach for integrative docking of proteins using chemical crosslinks

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The structures of protein complexes allow us to understand and modulate the biological functions of the proteins. Integrative docking is a computational method to obtain the structures of a protein complex, given the atomic structures of the constituent proteins along with other experimental data on the complex, such as chemical crosslinks or SAXS profiles. Here, we develop a new discrete geometry-based method, wall-EASAL, for integrative rigid docking of protein pairs given the structures of the constituent proteins and chemical crosslinks. The method is an adaptation of EASAL (Efficient Atlasing and Search of Assembly Landscapes), a state-of-the-art discrete geometry method for efficient and exhaustive sampling of macromolecular configurations under pairwise inter-molecular distance constraints. We provide a mathematical proof that the method finds a structure satisfying the crosslink constraints under a natural condition satisfied by energy landscapes. We compare wall-EASAL with IMP (Integrative Modeling Platform), a commonly used integrative modeling method, on a benchmark, varying the numbers, types, and sources of input crosslinks, and sources of monomer structures. The wall-EASAL method performs better than IMP in terms of the average satisfaction of the configurations to the input crosslinks and the average similarity of the configurations to their corresponding native structures. The ensembles from IMP exhibit greater variability in these two measures. Further, wall-EASAL is more efficient than IMP. Although the current study uses crosslinks, the method is general and any source of distance constraints can be used for integrative docking with wall-EASAL. However, the current implementation only supports binary rigid protein docking, i.e. , assumes that the monomer structures are known and remain rigid. Additionally, the current implementation is deterministic, i.e. , it does not account for uncertainties in the crosslinking data beyond using distance bounds. Neither of these appears to be a theoretical or algorithmic limitation of the EASAL methodology. Structures from wall-EASAL can be incorporated in methods for modeling large macromolecular assemblies, for example by suggesting rigid bodies or restraints for use in these methods. This will facilitate the characterization of assemblies and cellular neighborhoods at increased efficiency, accuracy, and precision. The wall-EASAL method is available at https://bitbucket.org/geoplexity/easal-dev/src/Crosslink and the benchmark is available at https://github.com/isblab/Integrative_docking_benchmark .

Article activity feed