Optical control of sphingolipid biosynthesis using photoswitchable sphingosines

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSph s, as light-sensitive substrates for sphingolipid biosynthesis. Photo-isomerization of the azobenzene moiety enables reversible switching between a straight trans - and curved cis -form of the lipid’s hydrocarbon tail. Combining in vitro enzyme assays with metabolic labeling studies, we demonstrate that trans -to- cis isomerization of caSph s profoundly stimulates their metabolic conversion by ceramide synthases and downstream sphingomyelin synthases. These light-induced changes in sphingolipid production rates are acute, reversible, and can be implemented with great efficiency in living cells. Our findings establish caSph s as versatile tools with unprecedented opportunities to manipulate sphingolipid biosynthesis and function with the spatiotemporal precision of light.

Article activity feed