NOTCH1 drives tumor plasticity and metastasis in hepatocellular carcinoma

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Liver cancer, the third leading cause of cancer-related mortality worldwide, has two main subtypes: hepatocellular carcinoma (HCC), accounting most of the cases, and cholangiocarcinoma (CAA). NOTCH pathway regulates the intrahepatic development of bile ducts, which are lined with cholangiocytes, but it can also be upregulated in 1/3 of HCCs. To better understand the role of NOTCH in HCC, we developed a novel mouse model driven by activated NOTCH1 intracellular domain (NICD1) and MYC overexpression in hepatocytes. Using the hydrodynamic tail vein injection method for establishing primary liver tumors, we generated a novel murine model of liver cancer harboring MYC overexpression and NOTCH1 activation. We characterized this model histopathologically as well as transcriptomically, utilizing both bulk and single cell RNA-sequencing. MYC;NICD1 tumors displayed a combined HCC-CCA phenotype with temporal plasticity. At early time-points, histology was predominantly cholangiocellular, which then progressed to mainly hepatocellular. The hepatocellular component was enriched in mesenchymal genes and gave rise to lung metastasis. Metastatic cells were enriched in the TGFB and VEGF pathways and their inhibition significantly reduced the metastatic burden. Our novel mouse model uncovered NOTCH1 as a driver of temporal plasticity and metastasis in HCC, the latter of which is, in part, mediated by angiogenesis and TGFß pathways.

Article activity feed