Iron-sensing and redox properties of the hemerythrin-like domains of Arabidopsis BRUTUS and BRUTUS-LIKE2 proteins

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Iron uptake in plants is negatively regulated by highly conserved hemerythrin (Hr) E3 ubiquitin ligases exemplified by Arabidopsis thaliana BRUTUS (BTS). Physiological studies suggest these are the elusive plant iron sensors, but biochemical evidence is lacking. Here we demonstrate that the N-terminal domains of BTS and BTS-LIKE2 (BTSL2) respectively bind three and two diiron centres within three closely packed Hr-like subdomains. The centres can be reversibly oxidized by O 2 and H 2 O 2 , resulting in a di-Fe 3+ form that is non-labile. In the reduced state, a proportion of the iron becomes labile, based on accessibility to Fe 2+ chelators and reconstitution experiments, consistent with dynamic iron binding. Impaired iron binding and altered redox properties in the BTS dgl variant correlate with diminished capacity to suppress the downstream signalling cascade. These data provide the biochemical foundation for a mechanistic model of how BTS/Ls function as iron sensors that are unique to the plant kingdom.

Article activity feed