Single-chain nanobody inhibition of Notch and avidity enhancement utilizing the β-pore forming toxin Aerolysin

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Notch plays critical roles in developmental processes and disease pathogenesis, which has led to numerous efforts to modulate its function with small molecules and antibodies. Here we present a nanobody inhibitor of Notch signaling, derived from a synthetic phage-display library targeting the notch Negative Regulatory Region (NRR). The nanobody inhibits Notch signaling in a luciferase reporter assay and in Notch-dependent hematopoietic progenitor cell differentiation assay, despite a modest 19uM affinity for Notch. We addressed the low affinity by fusion to a membrane-associating domain derived from the β-Pore forming toxin Aerolysin, resulting in a significantly improved IC50 for Notch inhibition. The nanobody-aerolysin fusion inhibits proliferation of T-ALL cell lines with similar efficacy to other Notch pathway inhibitors. Overall, this study reports the development of a Notch inhibitory antibody, and demonstrates a proof-of-concept for a generalizable strategy to increase the efficacy and potency of low-affinity antibody binders.

Article activity feed