Deciphering molecular determinants of GPCR-G protein receptor interactions by complementary integrative structural biology methods
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Many physiological processes are dependent on G protein-coupled receptors (GPCRs), the biggest family of human membrane proteins and a significant class of therapeutic targets. Once activated by external stimuli, GPCRs use G proteins and arrestins as transducers to generate second messengers and trigger downstream signaling, leading to diverse signaling profiles. The G protein-coupled bile acid receptor 1 (GPBAR1, also known as Takeda G protein-coupled receptor 5, TGR5) is a class A bile acid membrane receptor that regulates energy homeostasis and glucose and lipid metabolism. GPBAR1/G protein interactions are implicated in the prevention of diabetes and the reduction of inflammatory responses, making GPBAR1 a potential therapeutic target for metabolic disorders. Here, we present an integrated structural biology approach combining hydrogen/deuterium exchange mass spectrometry (HDX-MS) and cryo-electron microscopy (cryo-EM) to identify the molecular determinants of GPBAR1 conformational dynamics upon G protein binding. Thanks to extensive optimization of both HDX-MS and cryo-EM workflows, we achieved over 99% sequence coverage along with a 2.5-Å resolution structure, both of which are state-of-the-art and solely obtained for complete GPCR complexes. Altogether, our results provide information on the under-investigated GPBAR1 binding mode to its cognate G protein, pinpointing the synergic and powerful combination of higher (cryo-EM) and lower (HDX-MS) resolution structural biology techniques to dissect GPCR/G protein binding characteristics.
Short statement
This work highlights the utility of integrating cryo-EM and HDX-MS for studying large multiprotein complexes such as GPCR/G protein complexes. Cryo-EM offers high-resolution structural details, while HDX-MS reveals the dynamic conformational changes during assembly, providing a comprehensive structural view of difficult-to-study membrane protein systems.