Effects of Martian magnetic and gravitational fields across multiple generations of the nematode C. elegans

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Life on Earth evolved under a specific set of environmental conditions, including consistent gravitational and magnetic fields. However, planned human missions to Mars in the coming decades will expose terrestrial organisms to radically different conditions, with Martian gravity being approximately 38% of Earth's and a significantly reduced magnetic field. Understanding the combined effects of these factors is crucial, as they may impact biological systems that evolved under different conditions. In this study, we investigated the effects of simulated Martian gravity and hypomagnetic fields on the nematode Caenorhabditis elegans across six generations. We used an integrated experimental setup consisting of clinostats to mimic the reduced Martian gravity, and Merritt coil magnetic cages to model the decreased Martian magnetic fields. We assessed behavioral, morphological, and physiological responses of C. elegans. High-throughput automated assays revealed significant reductions in motor output and morphological dimensions for animals in the Mars treatment compared to matched earth-like controls. We assessed neurological function by means of chemotaxis assays and found a progressive decline in performance for worms raised under the Martian paradigm compared to Earth controls. Our results show that worms grown under Martian-like conditions exhibit progressive physiological alterations across generations, suggesting that the unique environment of Mars might pose challenges to biological function and adaptation. These findings contribute to understanding how living organisms may respond to the combined effects of reduced gravity and hypomagnetic fields, providing insights relevant for future human exploration and potential colonization of Mars.

Article activity feed