ZMYND11 Functions in Bimodal Regulation of Latent Genes and Brain-like Splicing to Safeguard Corticogenesis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Despite the litany of pathogenic variants linked to neurodevelopmental disorders (NDD) including autism (ASD) and intellectual disability 1,2 , our understanding of the underlying mechanisms caused by risk genes remain unclear. Here, we leveraged a human pluripotent stem cell model to uncover the neurodevelopmental consequences of mutations in ZMYND11 , a newly implicated risk gene 3,4 . ZMYND11, known for its tumor suppressor function, encodes a histone-reader that recognizes sites of transcriptional elongation and acts as a co-repressor 5,6 . Our findings reveal that ZMYND11-deficient cortical neural stem cells showed upregulation of latent developmental pathways, impairing progenitor and neuron production. In addition to its role on histones, ZMYND11 controls a brain-specific isoform switch involving the splicing regulator RBFOX2. Extending our findings to other chromatin-related ASD risk factors revealed similar developmental pathway activation and splicing dysregulation, partially rescuable through ZMYND11’s regulatory functions.

Article activity feed