An Open Annotated Dataset and Baseline Machine Learning Model for Segmentation of Vertebrae with Metastatic Bone Lesions from CT

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Automatic analysis of pathologic vertebrae from computed tomography (CT) scans could significantly improve the diagnostic management of patients with metastatic spine disease. We provide the first publicly available annotated imaging dataset of cancerous CT spines to help develop artificial intelligence frameworks for automatic vertebrae segmentation and classification. This collection contains a dataset of 55 CT scans collected on patients with various types of primary cancers at two different institutions. In addition to raw images, data include manual segmentations and contours, vertebral level labeling, vertebral lesion-type classifications, and patient demographic details. Our automated segmentation model uses nnU-Net, a freely available open-source framework for deep learning in healthcare imaging, and is made publicly available. This data will facilitate the development and validation of models for predicting the mechanical response to loading and the resulting risk of fractures and spinal deformity.

Article activity feed