B cells imprinted by ancestral SARS-CoV-2 develop pan-sarbecovirus neutralization in immune recalls

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

A key question on ancestral SARS-CoV-2 immune imprinting is to what extent imprinted B cells can develop neutralizing breadth and potency in immune recalls. Here, we longitudinally tracked B cells recognizing wild-type spike in two individuals, who were sequentially infected by Omicron variants after receiving mRNA vaccines. Functional and genetic analysis of 632 monoclonal antibodies (mAbs) from those B cells reveals that mAbs cloned after second infection have dramatically enhanced neutralizing breadth and potency, which is attributed to recall and maturation of pre-existing memory B cells. Among the 11 mAbs that potently neutralize SARS-CoV-2 variants from wild-type to KP.3, 5 mAbs are classified into public clonotypes encoded by IGHV3-53 or IGHV3-66, whereas the rest belong to a rarely reported clonotype encoded by IGHV3-74. Notably, IGHV3-74 mAbs can also broadly neutralize other sarbecoviruses by targeting a novel epitope on receptor-binding domain of spike. These results support that ancestral SARS-CoV-2 immune imprinting can be harnessed in developing pan-SARS-CoV-2 and even pan-sarbecovirus vaccines.

Summary

Chen et al. demonstrate that B cells imprinted by ancestral SARS-CoV-2 have tremendous potential to develop neutralizing breadth and potency in repeated immune recalls driven by Omicron variants, implicating that ancestral SARS-CoV-2 immune imprinting can be harnessed in developing pan-SARS-CoV-2 and even pan-sarbecovirus vaccines.

Article activity feed