Persistent Na + current couples spreading depolarization to seizures in Scn8a gain of function mice

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Spreading depolarization (SD) is a slowly propagating wave of massive cellular depolarization that transiently impairs the function of affected brain regions. While SD typically arises as an isolated hemispheric event, we previously reported that reducing M-type potassium current (I KM ) by ablation of Kcnq2 in forebrain excitatory neurons results in tightly coupled spontaneous bilateral seizure-SD complexes in the awake mouse cortex. Here we find that enhanced persistent Na + current due to gain-of-function (GOF) mutations in Scn8a (N1768D/+, hereafter D/+) produces a similar compound cortical excitability phenotype. Chronic DC-band EEG recording detected spontaneous bilateral seizure-SD complexes accompanied by seizures with a profound tonic motor component, which occur predominantly during the light phase and were detected at ages between P33-100. Laser speckle contrast imaging of cerebral blood flow dynamics resolved SD as a bilateral wave of hypoperfusion and subsequent hour-lasting hypoperfusion in Scn8a D/+ cortex in awake head-restrained mice evoked by a PTZ injection. Subcortical recordings in freely moving mice revealed that approximately half of the spontaneous cortical seizure-SD complexes arose with a concurrent SD-like depolarization in the thalamus and delayed depolarization in the striatum. In contrast, SD-like DC potential shifts were rarely detected in the hippocampus or upper pons. Consistent with the high spontaneous incidence in vivo , cortical slices from Scn8a D/+ mice showed a raised SD susceptibility, and pharmacological inhibition of persistent Na + current (I NaP ), which is enhanced in Scn8a D/+ neurons, inhibited SD generation in cortical slices ex vivo as well as in head-fixed mice in vivo , indicating that I NaP contributes to SD susceptibility. Ex vivo Ca 2+ imaging studies using acute brain slices expressing genetic Ca 2+ sensor (Thy1-GCAMP6s) demonstrated that pharmacological activation of I KM suppressed Ca 2+ spikes and SD, whereas an I KM inhibitor strongly increased the frequency of hippocampal Ca 2+ spikes in Scn8a D/+ , but not WT slices, suggesting that I KM restrains the Scn8a GOF hyperexcitability. Together, our study identifies a cortical SD phenotype in Scn8a GOF mice shared with the Kcnq2 -cKO model of developmental epileptic encephalopathy, and reveals that an imbalance of non-inactivating inward and outward tonic membrane currents bidirectionally modulates spatiotemporal SD susceptibility.

Article activity feed