A robust synthetic biology toolkit to advance carboxysome study and redesign
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Carboxysomes are polyhedral protein organelles that microorganisms use to facilitate carbon dioxide assimilation. They are composed of a modular protein shell which envelops an enzymatic core mainly comprised of physically coupled Rubisco and carbonic anhydrase. While the modular construction principles of carboxysomes make them attractive targets as customizable metabolic platforms, their size and complexity can be a hinderance. In this work, we design and validate a plasmid set – the pXpressome toolkit -in which α-carboxysomes are robustly expressed and remain intact and functional after purification. We tested this toolkit by introducing mutations which influence carboxysome structure and performance. We find that deletion of vertex-capping genes results in formation of larger carboxysomes while deletion of facet forming genes produces smaller particles, suggesting that adjusting the ratio of these proteins can rationally affect morphology. Through a series of fluorescently labeled constructs, we observe this toolkit leads to more uniform expression and better cell health than previously published carboxysome expression systems. Overall, the pXpressome toolkit facilitates the study and redesign of carboxysomes with robust performance and improved phenotype uniformity. The pXpressome toolkit will support efforts to remodel carboxysomes for enhanced carbon fixation or serve as a platform for other nanoencapsulation goals.