Acute GARP depletion disrupts vesicle transport, leading to severe defects in sorting, secretion, and O-glycosylation
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The GARP complex is an evolutionarily conserved protein complex proposed to tether endosome-derived vesicles at the trans-Golgi network. While prolonged depletion of GARP leads to severe trafficking and glycosylation defects, the primary defects linked to GARP dysfunction remain unclear. In this study, we utilized the mAID degron strategy to achieve rapid degradation of VPS54 in human cells, acutely disrupting GARP function. This resulted in the partial mislocalization and degradation of a subset of Golgi-resident proteins, including TGN46, ATP7A, TMEM87A, CPD, C1GALT1, and GS15. Enzyme recycling defects led to the early onset of O-glycosylation abnormalities. Additionally, while the secretion of fibronectin and cathepsin D was altered, mannose-6-phosphate receptors were largely unaffected. Partial displacement of COPI, AP1, and GGA coats caused a significant accumulation of vesicle-like structures and large vacuoles. Electron microscopy detection of GARP-dependent vesicles, along with the identification of specific cargo proteins, provides direct experimental evidence of GARP’s role as a vesicular tether. We conclude that the primary defects of GARP dysfunction involve vesicular coat mislocalization, accumulation of GARP-dependent vesicles, degradation and mislocalization of specific Golgi proteins, and O-glycosylation defects.