Development and Multinational Validation of an Ensemble Deep Learning Algorithm for Detecting and Predicting Structural Heart Disease Using Noisy Single-lead Electrocardiograms

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background and Aims

AI-enhanced 12-lead ECG can detect a range of structural heart diseases (SHDs) but has a limited role in community-based screening. We developed and externally validated a noise-resilient single-lead AI-ECG algorithm that can detect SHD and predict the risk of their development using wearable/portable devices.

Methods

Using 266,740 ECGs from 99,205 patients with paired echocardiographic data at Yale New Haven Hospital, we developed ADAPT-HEART, a noise-resilient, deep-learning algorithm, to detect SHD using lead I ECG. SHD was defined as a composite of LVEF<40%, moderate or severe left-sided valvular disease, and severe LVH. ADAPT-HEART was validated in four community hospitals in the US, and the population-based cohort of ELSA-Brasil. We assessed the model’s performance as a predictive biomarker among those without baseline SHD across hospital-based sites and the UK Biobank.

Results

The development population had a median age of 66 [IQR, 54-77] years and included 49,947 (50.3%) women, with 18,896 (19.0%) having any SHD. ADAPT-HEART had an AUROC of 0.879 (95% CI, 0.870-0.888) with good calibration for detecting SHD in the test set, and consistent performance in hospital-based external sites (AUROC: 0.852-0.891) and ELSA-Brasil (AUROC: 0.859). Among those without baseline SHD, high vs. low ADAPT-HEART probability conferred a 2.8- to 5.7-fold increase in the risk of future SHD across data sources (all P<0.05).

Conclusions

We propose a novel model that detects and predicts a range of SHDs from noisy single-lead ECGs obtainable on portable/wearable devices, providing a scalable strategy for community-based screening and risk stratification for SHD.

Article activity feed