Brain-like neural dynamics for behavioral control develop through reinforcement learning
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
During development, neural circuits are shaped continuously as we learn to control our bodies. The ultimate goal of this process is to produce neural dynamics that enable the rich repertoire of behaviors we perform with our limbs. What begins as a series of “babbles” coalesces into skilled motor output as the brain rapidly learns to control the body. However, the nature of the teaching signal underlying this normative learning process remains elusive. Here, we test two well-established and biologically plausible theories—supervised learning (SL) and reinforcement learning (RL)—that could explain how neural circuits develop the capacity for skilled movements. We trained recurrent neural networks to control a biomechanical model of a primate arm using either SL or RL and compared the resulting neural dynamics to populations of neurons recorded from the motor cortex of monkeys performing the same movements. Intriguingly, only RL-trained networks produced neural activity that matched their biological counterparts in terms of both the geometry and dynamics of population activity. We show that the similarity between RL-trained networks and biological brains depends critically on matching biomechanical properties of the limb. We then demonstrated that monkeys and RL-trained networks, but not SL-trained networks, show a strikingly similar capacity for robust short-term behavioral adaptation to a movement perturbation, indicating a fundamental and general commonality in the neural control policy. Together, our results support the hypothesis that neural dynamics for behavioral control emerge through a process akin to reinforcement learning. The resulting neural circuits offer numerous advantages for adaptable behavioral control over simpler and more efficient learning rules and expand our understanding of how developmental processes shape neural dynamics.