The A-C Linker controls centriole cohesion and duplication

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Centrioles are evolutionarily conserved barrel-shaped organelles playing crucial roles in cell division and ciliogenesis. These functions are underpinned by specific structural sub-elements whose functions have been under investigation since many years. The A- C linker structure, connecting adjacent microtubule triplets in the proximal region, has remained unexplored due to its unknown composition. Here, using ultrastructure expansion microscopy, we characterized two recently identified A-C linker proteins, CCDC77 and WDR67, along with a newly discovered protein, MIIP. Our findings reveal that these proteins localize between microtubule triplets at the A-C linker, forming a complex. Depletion of A-C linker components disrupt microtubule triplet cohesion, leading to breakage at the proximal end. Co-removal of the A-C linker and the inner scaffold demonstrates their joint role in maintaining centriole architecture. Moreover, we uncover an unexpected function of the A-C linker in centriole duplication through torus regulation, underscoring the interplay between these protein modules.

Article activity feed