Virtual epilepsy patient cohort: generation and evaluation
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Epilepsy is a prevalent brain disorder, characterized by sudden, abnormal brain activity, making it difficult to live with. One-third of people with epilepsy do not respond to anti-epileptic drugs. Drug-resistant epilepsy is treated with brain surgery. Successful surgical treatment relies on identifying brain regions responsible for seizure onset, known as epileptogenic zones (EZ). Despite various methods for EZ estimation, evaluating their efficacy remains challenging due to a lack of ground truth for empirical data. To address this, we generated and evaluated a cohort of 30 virtual epilepsy patients, using patient-specific anatomical and functional data from 30 real drug-resistant epilepsy patients. This personalized modelling, based on the patient’s brain data, is called a virtual brain twin. For each virtual patient, we provided data that included anatomically parcellated brain regions, structural connectivity, reconstructed intracranial electrodes, simulated brain activity at both the brain region and electrode levels, and key parameters of the virtual brain twin. These key parameters, which include the EZ hypothesis, serve as the ground-truth for simulated brain activity. For each virtual brain twin, we generated synthetic spontaneous seizures, stimulation-induced seizures and interictal activity. We systematically evaluated these simulated brain signals by quantitatively comparing them against their corresponding empirical intracranial recordings. Simulated signals based on patient-specific EZ captured spatio-temporal seizure generation and propagation. Through in-silico exploration of stimulation parameters, we also demonstrated the role of patient-specific stimulation location and amplitude in reproducing empirically stimulated seizures. The virtual epileptic cohort is openly available, and can be directly used to systematically evaluate methods for the estimation of EZ or source localization using ground truth EZ parameters and source signals.