Upper bill bending as an adaptation for nectar feeding in hummingbirds
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Observations of maxillary (upper bill) bending in hummingbirds have been considered an optical illusion, yet a recent description of out-of-phase opening and closing between their bill base and tip suggests a genuine capacity for bill bending. We investigate bill kinematics during nectar feeding in six species of hummingbirds. We employed geometric morphometrics to identify bending zones and combined these data with measurements of bill flexural rigidity from microCT scans to better understand the flexing mechanism. We found that the mandible remains in place throughout the licking cycle, while the maxilla undergoes significant shape deformation, such that the distal portion of the upper bill bends upwards. We propose that bill bending is a key component of the drinking mechanism in hummingbirds, allowing the coordination of bill function (distal wringing and basal expansion) and tongue function (raking/squeegeeing) during intraoral transport. We present a fluid analysis that reveals a combination of pressure-driven (Poiseuille) and boundary-driven (Couette) flows, which have previously been thought to represent alternative drinking mechanisms. Bill bending allows for separation of the bill tips while maintaining a tightly closed middle section of the bill, enabling nectar exploitation in long and narrow flowers that can exclude less efficient pollinators.