Cxcl10 is required for survival during SARS-CoV-2 infection in mice

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, remains endemic worldwide ∼5 years since the first documented case. Severe COVID-19 is widely considered to be caused by a dysregulated immune response to SARS-CoV-2 within the respiratory tract. Circulating levels of the chemokine CXCL10 are strongly positively associated with poor outcome; however, its precise role in pathogenesis and its suitability as a therapeutic target have remained undefined. Here, we challenged 4-6 month old C57BL/6 mice genetically deficient in Cxcl10 with a mouse-adapted strain of SARS-CoV-2. Infected male, but not female, Cxcl10 -/- mice displayed increased mortality compared to wild type controls. Histopathological damage, inflammatory gene induction and virus load in the lungs of male mice 4 days post infection and before death were not broadly influenced by Cxcl10 deficiency. However, accumulation of B cells and both CD4 + and CD8 + T cells in the lung parenchyma of infected mice was reduced in the absence of Cxcl10. Thus, during acute SARS-CoV-2 infection, Cxcl10 regulates lymphocyte infiltration in the lung and confers protection against mortality. Our preclinical model results do not support targeting CXCL10 therapeutically in severe COVID-19.

Article activity feed