Motility-dependent processes in Toxoplasma gondii tachyzoites and bradyzoites: same same but different
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The tachyzoite stage of the apicomplexan parasite Toxoplasma gondii utilizes motility for multiple purposes during its lytic cycle, including host cell invasion, egress from infected cells, and migration to new uninfected host cells to repeat the process. Bradyzoite stage parasites, which establish a new infection in a naïve host, must also use motility to escape from the cysts that are ingested by the new host and then migrate to the gut wall, where they either invade cells of the intestinal epithelium or squeeze between these cells to infect the underlying connective tissue. We know very little about the motility of bradyzoites, which we analyze in detail here and compare to the well-characterized motility and motility-dependent processes of tachyzoites. Unexpectedly, bradyzoites were found to be as motile as tachyzoites in a 3D model extracellular matrix, and they showed increased invasion into and transmigration across certain cell types, consistent with their need to establish the infection in the gut. The motility of the two stages was inhibited to the same extent by cytochalasin D and KNX-002, compounds known to target the parasite’s actomyosin-based motor. In contrast, other compounds that impact tachyzoite motility (tachyplegin and enhancer 5) have less of an effect on bradyzoites, and rapid bradyzoite egress from infected cells is not triggered by treatment with calcium ionophores, as it is with tachyzoites. The similarities and differences between these two life cycle stages highlight the need to characterize both tachyzoites and bradyzoites for a more complete understanding of the role of motility in the parasite life cycle and the effect that potential therapeutics targeting parasite motility will have on disease establishment and progression.