Museomics analyses inform about Channichthys icefish species diversity

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The rapid diversification of notothenioid fishes in the waters surrounding the Antarctic continent is a prime example of the process of adaptive radiation. Within around 10 million years, Antarctic notothenioids have diversified into over 100 species with a broad range of lifestyles and ecological adaptations. However, the exact number of species within this radiation has long been unclear. Particularly challenging is the taxonomy of the genus Channichthys , for which between one and nine species have been recognized by different authors. The putative species from this genus are known from a limited number of representative specimens, of which most were sampled decades ago. Here, we investigated the mitochondrial genomes of museum specimens representing the four recently recognized species Unicorn Icefish ( C. rhinoceratus ), Red Icefish ( C. rugosus ), Sailfish Pike ( C. velifer ), and Charcoal Icefish ( C. panticapaei ), complemented by morphological analyses. All analyzed specimens were collected in the 1960s and 1970s and fixed in formaldehyde, and their DNA has thus been heavily degraded. Applying ancient-DNA protocols for DNA extraction and single-stranded library preparation, we were nevertheless able to obtain sufficient endogenous DNA to reconstruct the mitochondrial genomes of one specimen of each species. These mitochondrial genome sequences were nearly identical for the three specimens assigned to Unicorn Icefish, Red Icefish, and Sailfish Pike, while greater mitochondrial divergence was observed for the Charcoal Icefish specimens. We discuss possible explanations of the contrast between these molecular results and the recognizable morphological variation found among the four species, and recommend that at least the Charcoal Icefish be included the list of valid icefish and notothenioid species.

Article activity feed